skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dutta, Bhaskar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> We explore the potential of gravitational waves (GWs) to probe the pre-BBN era of the early universe, focusing on the effects of energy injection. Specifically, we examine a hidden sector alongside the Standard Model that undergoes a strong first-order phase transition (FOPT), producing a GW signal. Once the phase transition has completed, energy injection initiates reheating in the hidden sector, which positions the hidden sector field so that additional phase transitions can occur. This can result in a total of three distinct phase transitions with a unique three-peak GW spectrum. Among these transitions, the first and third are of the standard type, while the intermediate second transition is inverted, moving from a broken to an unbroken phase. Using polynomial potentials as a framework, we derive analytical relations among the phase transition parameters and the resulting GW spectrum. Our results indicate that the second and third transitions generate GWs with higher amplitudes than the first, with a peak frequency ratio differing by up to an order of magnitude. This three-peak GW spectrum is detectable by upcoming facilities such as LISA, BBO, and UDECIGO. Notably, the phenomenon is robust across various potentials and model parameters, suggesting that hidden sector GWs provide a powerful tool for exploring new physics scenarios in the pre-BBN era. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Abstract We consider the nuclear absorption of dark matter as an alternative to the typical indirect detection search channels of dark matter decay or annihilation. In this scenario, an atomic nucleus transitions to an excited state by absorbing a pseudoscalar dark matter particle and promptly emits a photon as it transitions back to its ground state. The nuclear excitation of carbon and oxygen in the Galactic Center would produce a discrete photon spectrum in the𝒪(10) MeV range that could be detected by gamma-ray telescopes. Using theBIGSTICKlarge-scale shell-model code, we calculate the excitation energies of carbon and oxygen. We constrain the dark matter-nucleus coupling for current COMPTEL data, and provide projections for future experiments AMEGO-X, e-ASTROGAM, and GRAMS for dark matter masses from ∼ 10 to 30 MeV. We find the excitation process to be very sensitive to the dark matter mass and find that the future experiments considered would improve constraints on the dark matter-nucleus coupling within an order of magnitude. 
    more » « less
    Free, publicly-accessible full text available February 11, 2026
  3. A<sc>bstract</sc> We consider the possibility of indirect detection of dark sector processes by investigating a novel form of interaction between ambient dark matter (DM) and primordial black holes (PBHs). The basic scenario we envisage is that the ambient DM is “dormant”, i.e., it has interactions with the SM, but its potential for an associated SM signal is not realized for various reasons. We argue that the presence of PBHs with active Hawking radiation (independent of any DM considerations) can act as a catalyst in this regard by overcoming the aforementioned bottlenecks. The central point is that PBHs radiate all types of particles, whether in the standard model (SM) or beyond (BSM), which have a mass at or below their Hawking temperature. The emission of such radiation is “democratic” (up to the particle spin), since it is based on a coupling of sorts of gravitational origin. In particular, such shining of (possibly dark sector) particles onto ambient DM can then activate the latter into giving potentially observable SM signals. We illustrate this general mechanism with two specific models. First, we consider asymmetric DM, which is characterized by an absence of ambient anti-DM, and consequently the absence of DM indirect detection signals. In this case, PBHs can “resurrect” such a signal by radiating anti-DM, which then annihilates with ambient DM in order to give SM particles such as photons. In our second example, we consider the PBH emission of dark gauge bosons which can excite ambient DM into a heavier state (which is, again, not ambient otherwise), this heavier state later decays back into DM and photons. Finally, we demonstrate that we can obtain observable signals of these BSM models from asteroid-mass PBHs (Hawking radiating currently with ~$$ \mathcal{O}\left(\textrm{MeV}\right) $$ O MeV temperatures) at gamma-ray experiments such as AMEGO-X. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  4. Heavy neutral leptons (HNLs) are often among the hypothetical ingredients behind nonzero neutrino masses. If sufficiently light, they can be produced and detected in fixed-target-like experiments. We show that if the HNLs belong to a richer—but rather generic—dark sector, their production mechanism can deviate dramatically from expectations associated with the standard-model weak interactions. In more detail, we postulate that the dark sector contains an axionlike particle (ALP) that naturally decays into HNLs. Since ALPs mix with the pseudoscalar hadrons, the HNL flux might be predominantly associated with the production of neutral mesons (e.g., π 0 , η ) as opposed to charge hadrons (e.g., π ± , K ± ). In this case, the physics responsible for HNL production and decay are not directly related and experiments like DUNE might be sensitive to HNLs that are too weakly coupled to the standard model to be produced via weak interactions, as is generically the case of HNLs that play a direct role in the type-I seesaw mechanism. Published by the American Physical Society2024 
    more » « less
  5. A<sc>bstract</sc> Axions and axion-like pseudoscalar particles with dimension-5 couplings to photons exhibit coherent Primakoff scattering with ordered crystals at keV energy scales, making for a natural detection technique in searches for solar axions. We find that there are large suppressive corrections, potentially greater than a factor of$$ \mathcal{O} $$ O (103), to the coherent enhancement when taking into account absorption of the final state photon. This effect has already been accounted for in light-shining-through-wall experiments through the language of Darwin classical diffraction, but is missing from the literature in the context of solar axion searches that use a matrix element approach. We extend the treatment of the event rate with a heuristic description of absorption effects to bridge the gap between these two languages. Furthermore, we explore the Borrmann effect of anomalous absorption in lifting some of the event rate suppression by increasing the coherence length of the conversion. We study this phenomenon in Ge, NaI, and CsI crystal experiments and its impact on the projected sensitivities of SuperCDMS, LEGEND, and SABRE to the solar axion parameter space. Lastly, we comment on the reach of multi-tonne scale crystal detectors and strategies to maximize the discovery potential of experimental efforts in this vein. 
    more » « less
  6. We consider machine learning techniques associated with the application of a boosted decision tree (BDT) to searches at the Large Hadron Collider (LHC) for pair-produced lepton partners which decay to leptons and invisible particles. This scenario can arise in the minimal supersymmetric Standard Model (MSSM), but can be realized in many other extensions of the Standard Model (SM). We focus on the case of intermediate mass splitting ( 30 GeV ) between the dark matter (DM) and the scalar. For these mass splittings, the LHC has made little improvement over LEP due to large electroweak backgrounds. We find that the use of machine learning techniques can push the LHC well past discovery sensitivity for a benchmark model with a lepton partner mass of 110 GeV , for an integrated luminosity of 300 fb 1 , with a signal-to-background ratio of 0.3 . The LHC could exclude models with a lepton partner mass as large as 160 GeV with the same luminosity. The use of machine learning techniques in searches for scalar lepton partners at the LHC could thus definitively probe the parameter space of the MSSM in which scalar muon mediated interactions between SM muons and Majorana singlet DM can both deplete the relic density through dark matter annihilation and satisfy the recently measured anomalous magnetic moment of the muon. We identify several machine learning techniques which can be useful in other LHC searches involving large and complex backgrounds. Published by the American Physical Society2024 
    more » « less
  7. A bstract Searches for new low-mass matter and mediator particles have actively been pursued at fixed target experiments and at e + e − colliders. It is challenging at the CERN LHC, but they have been searched for in Higgs boson decays and in B meson decays by the ATLAS and CMS Collaborations, as well as in a low transverse momentum phenomena from forward scattering processes (e.g., FASER). We propose a search for a new scalar particle in association with a heavy vector-like quark. We consider the scenario in which the top quark ( t ) couples to a light scalar ϕ′ and a heavy vector-like top quark T . We examine single and pair production of T in pp collisions, resulting in a final state with a top quark that decays purely hadronically, a T which decays semileptonically ( T → W + b → ℓ ν b ), and a ϕ′ that is very boosted and decays to a pair of collimated photons which can be identified as a merged photon system. The proposed search is expected to achieve a discovery reach with signal significance greater than 5 σ (3 σ ) for m ( T ) as large as 1.8 (2) TeV and m ( ϕ′ ) as small as 1 MeV, assuming an integrated luminosity of 3000 fb − 1 . This search can expand the reach of T , and demonstrates that the LHC can probe low-mass, MeV-scale particles. 
    more » « less